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ABSTRACT

In this paper we present a theoretical and numerical study of the growth of
linear disturbances in the high-Reynolds-number laminar compressible wake behind a
flat plate which is aligned with a uniform stream. No ad hoc assumptions are made
as to the nature of the undisturbed flow (in contrast to previous investigations) but
instead the theory is developed rationally by use of proper wake-profiles which satisfy
the steady equations of motion. The initial growth of near wake perturbations is
governed by the compressible Rayleigh equation which is studied analytically for
long- and short-waves. These solutions emphasize the asymptotic structures involved
and provide a rational basis for a nonlinear development. The evolution of arbitrary
wavelength perturbations is addressed numerically and spatial stability solutions are
presented that account for the relative importance of the different physical mechan-
isms present, such as three-dimensionality, increasing Mach numbers and the non-
parallel nature of the mean flow. Our findings indicate that for low enough (sub-
sonic) Mach numbers, there exists a region of absolute instability very close to the
trailing-edge with the majority of the wake being convectively unstable. At higher
Mach numbers (but still not large - hypersonic) the absolute instability region seems
to disappear and the maximum available growth-rates decrease considerably. Three-

dimensional perturbations provide the highest spatial growth-rates.

1This research was supported by the National Aeronautics and Space Administration under N-ASI:\ 00{1-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



1. Introduction.

In recent years there has been an increased interest in comprewble shear layer flows due to the
need in development of hypersonic propuhxon ;syqtemq for trans-atmospheric flight. The major problem
that faces these projects, is the degrquﬂf §rapi!izaﬁon that compressible mixing layers exhibit as the
Mach number increases. This in turn means that the high degree of mixing that is desirable before igni-

tion (in the scram-;et engine for example) is not avarlable rnsrde the system. A quantitative understand-

ing of the instability mechanisms present is of much vaTue therefore. Some techniques have been sug-

gested to alleviate this problem, by Kumar et al. (1987).

Most of the effort in understanding thevstarlrJirlirty of shear layers has been centered around the fully
developed monotonic compressible shear ]aj}ér“ﬁrhi‘ch is typically modeled by a hyperbolic tangent dis-
tribution, together with the corresponding témbgrai{rre profile (see for exémple Gropengiesser (1969),
Jackson and Grosch (1989a,b), Ragab and Wu (1988)). In practical applications, such as those sited
above, the mixing occurs when two streams come togclher at the trailing edge of a splitter plate to
form a wake. If the free-stream velocitics of the two components are different (usually this is the case,
but in many cases they are numerically close) lb; tanh shear layer forms the far wake development of
the steady equations of motion. There is a region closer to the trailing edge, where the unperturbed
flow has a deﬁnite wake component. It is the purpose of‘thiéiip‘aper ’t‘o'a'nalyze the instability mechan-
isms of thrq “wake | regron In order to fix matters we will consider the casé of a plane wake where the

free-stream vaiues of the two oncoming fluid components are equal.

Incompressible wakes have been VStlrdie'd extensively for the existence of unstable waves through
numerical and aﬁilljrﬁr:al solutions of lhccl'r;:calRaylmgh stability equatrior;. Most early studies
assume an ad hoc basic ﬂow in the form of a gnuwan or sech? velocity distribution (Hollingdale
(1940), McKoen (1957); Sato and Kuriki (1961), Mattmgly and Criminale (1972)) It is clear that such
basic flow does not satisfy the equ'ltions of motion and at best provides the correct characteristics of
the far- wake Further more, the flow characteristics in the near wake are fairly complicated and involve
the double structure described in the 9emmal \r/;rk of Goldstein (1930), where there is a displaced
outer boundary-layer region together with a thinner regron including the wake center-line through

which the '1brupt change of boundary conditions s (from no- shp upstream to symmetry downstream) is

'1ccommoddtcd Pap’lgeorgrou and Smuh (1989) (refcrred to as PSl) have considered mcompressrble
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wake-stability, both analytically and numerically, using a correct basic flow that satisfies the equations
of motion for large Reynolds numbers (the wake-boundary-layer equations of Goldstein). The non-
linear development of the instability is analyzed in an accompanying paper, Papageorgiou and Smith
(1988) (referred to as PS2).

A very interesting and physically important aspect of shear layer flows is the possibility of con-
vective or absolute instabilities. For an account of the ideas involved in shear layer stability see Huerre
and Monkewitz (1985), Huerre (1987). This aspect of instability has been studied by Betchov and
Criminale (1966) and more recently by Hultgren and Aggarwal (1987), for a two-parameter family of
model basic states. More specifically the basic flow is assumed to have the formu=1-a e'hyz, where
0<a<1 , b>0 or an equivalent sech? distribution. Hultgren and Aggarwal for example, find that
the flow becomes absolutely unstable when a 2 0.943. Such a profile clearly corresponds to a station
very close to the trailing edge as we briefly demonstrate. The center-line velocity of the proposed
absolute-instability profiles is at most 0.057 in non-dimensional terms. Using Goldstein’s results (see
also Smith (1984)) we know that the velocity in the near-wake at the center-line is given by
1.611x1A23 where A is the Blasius skin-friction and is equal to 0.33206... . Equating the value 0.057
with this, gives the value for the non-dimensional x-station to be x = 0.0004017, or E= x'® = 0.0738.
The basic flow at this point does not seem to be representable by the gaussian model (see our results
section) and so some serious objections may be raised as to the rational prediction of
convective/absolute change-overs by use of such models. The trends seem to be correct, however, in
comparison to the results of PS1 which suggest an absolute instability region very near the trailing
edge. The important question that arises in supersonic wakes is, besides the possibility of absolute ins-
tability regions per se, the characteristics of an absolute instability region as the Mach number
increases. This is addressed numerically for two Mach numbers that are representative of the different
physics that is involved; these are 0.1 and 3.0 corresponding to compressible subsonic and supersoﬁic
flow respectively. It is found that the subsonic flow contains a region of absolute instability whereas
the supersonic one seems not to. The streamwise s!,ati,oni at which the change-over from convective to

absolute instability takes place for M=0.1 is less than 0.000001 in non-dimensional terms.

The purpose of the present work is to extend the incompressible study of PS1 to compressible
flows of arbitrary Mach numbers. Our approach is that of classical linear stability theory that covers

both two- and three-dimensional disturbances. In Section 2 we briefly describe the basic flow and
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formulate the linear stability problem that leads to the compressible Rayleigh equation. Section 3 is
used to analyze the stability of short-wave disturbances in the very near wake where the compressible
analogue of the Goldstein double structure proﬁdcé an asymptotic description for the unperturbed flow.
In Section 4 we consider the behavior of long-waves (these waves are long compared to the boundary-
layer thickness but not as long as the plate length-see Section 2 also). Section 5 discusses numerical
solutions of the Rayleigh equation using t}:c f;c;n};ally exact unperturbed profiles that are in turn com-

puted numerically. In Section 6 we present numerical results for a range of streamwise stations, Mach

numbers and angles of wave propagation, and finally we draw some conclusions.

Throughout the paper we use a cartesian frame of coordinates which is fixed at the trailing edge
x =0, The flow quantities p ,u,v,w,p, T, jt denote non-dimensional density, velocities in the x,
y and z directions, pressure, temperature and viscosity coefficient respectively, where non-

dimensionalizations are made with respect to free-stream values which are denoted by a subscript o,

The Reynolds number is R, = where L is the plate length, the Mach number is M = U_/a where

oo

ar is the sound-speed and the Prandtl number is Pr = p,, cp/k where c, is the specific heat at constant
pressure and k is the coefficient of thermal diffusivity. R, is taken to be asymptotically large
throughout, while M,, is arbitrary within the cdiri;ié;trof validity of the equations of motion. The
govérning equations used are the 2D steady and pressure-free (classical) compressible boundary-layer
equations for the calculation of the basic flow (bars are used to distinguish the basic flow), or the

unsteady compressible 3D Euler equations for the evolution of wavy disturbances. We give these here

for future reference.

p(uUT+vT, )=(T,), , (1.1a)
rs(ﬁTx+vT,)=-[}r-(”u"r,'),+(y-1)M’nﬁ} , (1.1h)
(pPu+(pv)=0 , (1.1c)
pT=1 . (1.1d)

The boundary conditions are
Uy (x,0)=Ty(x,0)=0 U(x,m);T(x,w)=1 . o (1.1BC)

The 3D Euler equations are used in the form

e m
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p(u‘+uux+vuy+wuz)=——y—h?p, ) (1.2a)
p(v,+uv,(+vvy+wv,,)=—-—«;r\172-py , (1.2b)
p(wl+uwx+va+wwl)=—-;l\172-p,, , (1.2¢)
p(T,+uTx+va+le)=—Y—-:F(p,+upx+vpy+wp1) , (1.2d)
pH(pul+(pv)y+(pw)=0, (1.2¢)
p=pT-DHM . (1.20

2. Basic flow and formulation of the linear stability problem.

The formulation that leads to the compressible Rayleigh equation essentially follows that of the
incompressible analogue, as described in PS1 for example. It is instructive, however, to bear in mind
the scales for which the Rayleigh equation is valid in the case of a planar wake. The arguments of
PS1 carry over to the present problem also (the important physical mechanism is the asymptotically
large Reynolds number which is common to both flows), and the instability develops on a local region
of horizontal and lateral extent of order R;!2; the time scale of the instability is also of order R;12.
These scalings insure the inviscid development of wavy disturbances of the viscous underlying basic
flow. Further more, as is usual in Rayleigh-type evolutions, the scales are such that the x-variation of
the basic flow as well as its lateral component, are higher order effects. In the present problem the
streamwise component of the basic flow varies on an order one x-scale while the lateral component is
of order R;"2, Viscosity becomes important when the wavelength of the perturbation becomes of
order unity as compared to the wake-thickness. For more details of the scaling analysis see PS1 and
PS2.

Before the introduction of a perturbation it is useful to summarize the characteristics of the under-
lying unperturbed state. This is described in detail by Papageorgiou (1989) and we sketch the results
here. The governing equations are (1.1a-d) together with the boundary conditions (1.1BC). Next we
assume a model fluid and a linear viscosity law, i.e. the Prandtl number Pr =1 and u=CT

(Chapman’s law, C is a constant that is scaled out of the problem and the equation L =T is used ).
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The Dorodnitsyn-Howarth transformation Y = J%,Y- is employed, from which it is seen that Crocco’s

equation (see Stewartson (1964)) becomes

’T

— =—(y-1)M?
P (Y )

It follows that T involves two constants of integration which can be found by matching with the

upstream flow. Two physically distinct cases 5:réwgi'v'cih; (i) constant wall temperhtﬁre, Tw say, on the
plate, and (i) insulated walls (i.e. the temperature gradient is zero on the plate upstream). In case (i)

the result is
T(x,Y):H%(y—l)M?(ﬁ—ﬁé)ﬁu("’l\’,—i)(l—ﬁ) , 2.1y
while in case (ii) we have
Toov)=t+dornM-®) . )

In order to solve for the velocity T(x,Y), conditions must also be given at the outset x = 0 since the

problem is parabolic in x. The nonlinear system that gives the undisturbed flow is

) U=y |, WU -Y.Oy=dyy . s
holdmg for x?O,together with thé bourncriary qénﬁditrions

Wx,0)=1, W(x,0)=ﬁ§(x,0)=0 . WOF,Y)=wg(Y) , (23BC)
where ‘VB' i’eri)"re?é;hris the Blasius tveloéit} broﬁ']’; gri"venr by

- 7 l ,,VV V 4 7 l” r” | V
Voot W =0 . o =Wp'(0) = wp'(e) - 1=0 5 yp"(0)=A=0332.. .

We will be mainly concerned with adiabatic wall conditions but the results can be extended to constant

wall temperatures also.

With the basic flow assumed known, a perturbation of size €, is introduced so that the total flow

has ﬂ‘ler:f(:)rl'mr
(u,v,w,p,T,p)=(T,0,0,p,T,0)+e(0,é,w,p,T,p)e(ax+hz-0t)

where the tilde functions depend on y alone. Substitution into (1.2a-f) (we are anticipating the inviscid

W e
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result here; equivalently a substitution into the Navier-Stokes equations together with the instability
scales described earlier yields the same result), and linearization with respect to € provides a linear sys-
tem of five ordinary differential equations. We will work with the transformed variable Y rather than
the physical one and will use the following forms of the compressible Rayleigh equation obtained by

elimination of four unknowns and dropping of the tildes :

— 2
pll_~2U p,_:l—.’l[a2+p2_%__(-ﬁ_c)2M2]p=0 f (2.4)
u-—c T
d | (G-c)¢-To |_ 25— =
-5 { o= ] o (i-¢c)$=0 , (2.5)

where primes denote Y-derivatives and G is given by

2,2 _
G=2‘—"29—T—Mz('ﬁ—c)2
o

Equations (2.4) and (2.5) describe the evolution of perturbation pressure and normal velocity respec-
tively; (2.5) was used by Gropengiesser (1969) in his study of shear layers. There is a choice in boun-
dary conditions at the wake center-line Y =0, due to the symmetry of the basic flow. We choose to
study two distinct wake-modes, anti-symmetric ones (mode 1) and symmetric ones (mode II). The con-
vention used here is that of incompressible wake stability whereby the perturbation is termed anti-
symmetric/symmetric if the streamwise velocity perturbation, u, is anti-symmetric/symmetric with
respect to Y=0. It is generally found that the anti-symmetric oncs are the most dangerous oncs. Experi-
mental evidence lends weight to this finding through the well-known Karman vortex-strect found in

wakes. The boundary conditions used are, therefore,
Mode I p(Y=0)=0 , p(Y=)=0 , Mode Il p(Y=0)=0 , p(Y==)=0 , (2.4BC)
Mode I ¢'(Y=0)=0 , ¢(Y=0) =0 , Mode Il HY=0)=0 , ¢(Y=)=0 . (2.5BC)

Here we have assumed that the disturbance decays at infinity. This assumption is reasonable since, in
contrast to shear layers, there does not exist a supersonic region that can support neutrally stable oscil-
lafory outgoing waves (see comments of Section 6 also; for a discussion of supersonic shear waves see
Jackson and Grosch (1989a)). The eigenvalue problems defined by (2.4), (2.4BC) or (2.5), (2.5BC)
are equivalent and must, in general, be addressed numerically. This is done in Section 5, but before

discussing numerical solutions we consider two important limits which are amenable to analysis. These



Tkl iy

-8 -

limits are short- and long-waves which in 2D temporal theory are characterized by ot — oo and o — 0
respectively (see PS1). It is worth noling that short- and long-wave analyses only make sense for tem-
poral theories, but as it turns out the growlh }ales are asymptotical:ly small in both cases thereby mak-
ing the results readily applicable to spatial stability via the Gaster (1968) group velocity transformation.
The analysis of the following sections considé;s'riiﬁb-dimensional waves and these results are extendi-

ble to three-dimensional ones after minor modifications.

3. Short waves, o0 — oo,

In this section we construct the asj’rm’ﬁt@t’ic behavior of the solutions in the limit of large o. The
physical structure of these waves is that they have length-scales which are small compared to the wake
thickness. Further more we concentrate on the near-wake where the basic flow is described by the
Goldstein double structure (see Papageorgiou (1989) for example). Our analysis can be viewed in
terms of the double limit x 5 0 and o = c. The ideas and structures involved are similar to the
incompressible case studied in PSI, but the growth rates we compute here are larger than their

incompressible counterparts.

The starting point is the Rayleigh equation (2.5) which is considered for 2D anti-symmetric
(mode I) disturbances - equivalently the pressure equation can be used, as well as mode 11 waves but
as the subsequent numerical results indicate, mode 1 waves are more unstable (see comments in the
introduction also). Inspection suggests the following expansions in the re-scaled region Y = o™! 1 with

n=0(1):

d=¢o+to G +aiopH o, (3.12)
U=:Ea;’ln+a“k4n‘+ cee ' (3.1b)
c=co+ o cl+(x‘2c2+a‘3c3+ e | (3.1¢)
For adiabatic walls the terhperamre expands as
T=To—a?n?Ty+ -+ , To=14+ —;—(y—l)Mz . Ty = %(y—l)?&zMz (3.1d)

The constant A in (3.1b) is the skin-friction of the Blasius flow discussed in the previous section, and

Ay = —(1/48) A%, The expansion (3.1b) reflects the fact that we are outside the Goldstein layer where

LT T I T R R T T R R R R R R LR B R N R LA ]

o
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the basic flow is essentially the displaced Blasius flow. In the analysis that follows the Goldstein layer

3 s therefore

(of thickness x'?) is thin compared to the wavelength 2n/a; the ordering a’l > x
observed. Physically this corresponds to the development of waves which are short compared to the
boundary-layer thickness but not as short as the Goldstein layer thickness. It can also be seen that
given any large o , the position x can be chosen to be small enough so as to validate the above order-

ing (this is achievable as long as x > R;m which means that we are still outside the triple-deck).

In view of the above, the Goldstein layer can be regarded as a sharp interface across which the
perturbation pressure and normal velocity must be continuous. This means that the following conditions

hold to all orders in o™ ! :
[6]1=0 , [(T-c)¢,-TH]=0 , (3.2a,b)

where the square bracket denotes the jump across 1 = 0. In view of these physical constraints, we find

_that for a non-trivial solution the leading order phase-speed vanishes, i.e.
!

!
: CO=O

is not surprising in view of the fact that the basic flow has a maximum streamwise component of
“o”! with which it can convect disturbances downstream. Substitution of (3.1a-d) into (2.5) gives
Ilowing solution to leading order

0F=Aoge T, (3.3)

+ refers to the solution for 11 > 0 and 1 < 0 respectively. Condition (3.2a) has been used to
1e same constant Ag in the upper and lower half planes respectively. When the leading order
n (3.3) is used in the pressure continuity condition (3.2b), and O(a™!) are balanced, we obtain

ding contribution to the phase-speed to be

¢ = > (3.4)

the compressible analogue of the result in PS1. It can be seen from this expression that the
seed of the perturbation decreases with increasing Mach number (cf. (3.1d)) and in fact decays
cally in the hypersonic limit. Next we find ¢, =0 , c; =0 (sce below). This implies that the
wves constructed here are almost neutral and have growth-rates of O(o™?) at most. This is in

to the incompressible problem which yields O(o™*) growth-rates (cf. PS1). The complex
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coefficient c3 is computed by construction of uniformly valid asymptotic expansions which are matched
across the critical layers and the central Goldstein layer to satisfy the boundary conditions and so pro-
vide the correction to the eigenvalue problem.

Before proceeding to the higher order approximations, it is useful to introduce a new vertical
coordinate &, given by & = Ty m; this simplifies the algebraic expressions since the critical layers now
occur at & =+ 1 (see below). The next corrections to ti1e eigenfunction satisfy the following equa-

tions, then

(£E=1) (g —0;)=0 , ¢y(=)=0 , (3.5)

Grr — 0y =2 2S5 (YE—+ 1) e - S(E2+ 2k + 1) et

(-1
where as before the upper sign is to be taken in the region & > 0 and the lower one in & < 0. The con-
stant S appearing in 3.6 is given by

A Ao M?

S
Tg

~ The solution for ¢, is identical to that of ¢, and so, without loss of generality, it is taken to be zero by

- re-normalization of Ag. As mentioned earlier, it can be seen that (3.6) has singularities at the levels

€ == 1; these singularities are critical layers and arise because the phase-speed is neutral to leading

order (cf. (3.4) abovei).' ‘The solution for ¢, then spﬁts up into four distinct regions (cf. 'Figure 1in
PS1). The four regions 1 <& <o , 0< E<1 , -1<E<0 , —o<&<~1 are denoted by

(1), (2), (3) and (4) respectively and the following solutions are found

o0 =e* By -5 (1 + > D) E (21 &+ () In - 1)
; 1 3 2 13
+S e [ [P+ D &+ (D) ¢ ig‘“—_ll 1e7dg, (3.7a)

0 =% (B, =S ()4 = (D E+ (=) E+ (D) g~ 1]

£ LR -
+Ay et +Seb ! [ —-;-yéf + (D E + (y——g-) + g‘lel 1e % gE, (3.7b)

oo

T

[T LT (IR R T T
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0 = ¢t [By+5 (- - o () B+ (=) &~ (12 InE + 1)

13
rAseb-Set l (o’ - D &+ -2 - %}2} e de, (3.7¢)

00 = ¢t (By+ S (21 - 1 (HDE+ () § ~ (D) InlE + 1]

g
~set | [—%Y&?—(wl)éd(v—%)—%}? 1e’™ g, | (3.7d)

In matching solutions across the critical levels we assume that the constants in the various regions are
suitably connected so as to render our inviscid solution as the zero viscosity limit of the Orr-
Sommerfeld equation. This amounts to picking up the correct branch from the complex logarithmic
dependence as has been explained by Lin (1955), Lees and Lin (1946) (see also Drazin and Reid
(1981)). The net effect, therefore, is a phase-jump of —in sgn(u’(§ = £1) ) as a critical level is crossed
from above (the temperature basic state is passive in this because it is positive throughout the domain).
Another set of connection equations is obtained from the continuity of ¢ across the levels E=11. The
analysis is fairly lengthy so we just give the results here. The following four algebraic equations are

obtained that connect the six unknowns A; , A, , By, B;, B3, By:

B, -B,—<’Ay=e(p;-Ppp) (3.82)

B, — B, +e2 A, = py — 2miS(y-2) (3.8b)

By - Bs+e? Ay=¢ (D1 - Ps) . (3.8¢)

By — By —e? Ay = —¢ (g + pg) + 21iS(Y-2) , (3.8d)

where p; , P3» Pa» Ps» Ps » P7 » Pg are real constants that arise from the limiting values of individual
solutions as the critical layers are approached from above or below. The exact effect of these constants
is of secondary importance to our purpose here since they are real valued and do not contribute
towards the instability. The complex terms (phase-jumps from the critical layers) are explicitly included
in the equations (3.8a-d) above.

The remaining two algebraic equations that enable complete solution for ¢, are obtained by con-
sideration of the Goldstein layer dynamics. We point out again that the scales involved are essentially

those of the incompressible problem of PS1; the compressibility effects, however, introduce
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perturbation dynamics at a lower order. The Goldstein layer has thickness € = x'* « 1. A rescaling of
the Dorodnotsyn-Howarth variable is required, therefore, and the order one variable Z is introduced,
given by Y = € Z. Consideration of the outer solutions for small | (or & ) suggests that the eigenfunc-
tion inside the Goldstein layer proceeds in powers of €c (this comes from the expansion of ¢g). The
next outer correction is o> ¢, and as we have shown above ¢, contains an order-one di;placement
Further more it is clear that instability will fl,rise from the contribution of ¢, (it contains the complex
phase-jumps) and so we chose to structure our expansion so that the effects of ¢, come in at second

order. This requires the balance €0 = o002 or £ = ™. In view of the definition of € this scaling

implies an asymptotic wavelengt'h of order x'2 as x tends to zero. The validity of the solutions can
be improved by a double expansion in powérs of o} and eq, whereby'lhe asymptolic condition is
g0t « 1. Both methods give the same final result (as was found for the incompressible problem of PS1

also) and for brevity we present the former analysis.

Using o' as the perturbation parameter the Goldstein layer is given by Y = o> Z and the

expansions are found to be

0G(2) = DYZ) + 7 2DY(Z) + o' DyZ) + - -+, (3.92)

U=’ F2Z)+0(@'?)  F@Z)~+A(IZ] +Ag) as Zotoo | (3.9b)
T=Ty— % o (;=-1)M?F? + O(0~15) | (3.9¢)
c=ale +adeyd or (3.9d)

where the function F(Z) is the self-similar near-wake solution found by Goldstein (1930); the constant
Ag represents the positive disp:liaccment of the upstream boundary-layers. The three leading order
solutions are then found to be -

D= Ay S  (3.10a)
Ag '
(D] = '—"E'— F(Z) + A] 7+ Az ’ (3.10b)
1
Aqc A A '
P, = C°23 - c_,z YF@Z)+TE Ay Z - —C—I‘- (ZF(Z)-FZ)) . (3.10c)
1

where A, , A, are constants to be determined from matching. Note that the solutions above reflect the

e T

[ T
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fact that we are considering mode I waves. With (3.10a-c) at hand, it is fairly straight-forward to match
with the outer solutions as |Z] — e and |E| — O respectively. This implies that A} = 0 and yields

the two required algebraic equations:

AghAg
Ay+By;= A3+ By (=A)-— . ) . (3.11a)
1
Agc A
Ay + Ay =By - By = 2 ( 022y (3.11b)
To Cy €

Solution for the six unknown constants yields the second order correction to the wave-speed c to be

¢y = A — 4KIS1 t2) ) (3.12)
2TohAg e

In (3.12) above, A is a real constant which we need not give here. The imaginary part of c3 is given

by (using the definition of S)

2n(y-2)AM? 3113
e2 [1 + (U2)(y=DM* G139

Cy =~

Since ¥ < 2 (in fact y = 1.4 ) the imaginary part of c; is positive and so the flow is linearly unstable.
This last remark follows from the correct identification of physically meaningful zero viscosity limit
solutions of the Orr-Sommerfeld equation (cf. Lin (1955)). Another point worth noting, is that the
growth rate in the hypersonic limit behaves like M™ as M — oo, as opposed to the M2 decay of the
leading order phase-speed c;. This means that the correction a‘3c3 always remains asymptotically
smaller than o'c; as the Mach number increases without bound for any functional dependence of

Mach number on o.

4. Long waves, a — 0.

The intuitive approach to long-wavelength perturbations indicates that the exact details of the
basic flow near the center-line are not that important, in obtaining leading order results at least, and the
solutions depend on the basic flow characteristics at infinity. This was pointed out and utilized by
Drazin and Howard (1966) in the description of several "broken-line" profiles, the results of which
extend to wakes also. Originally the analysis described incompressible flows, but was later extended to

include compressible ones also (Gill and Drazin (1965), Blumen et al. (1975)). The approach
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essentially depends on obtaining solutions in the upper and lower half-planes respectively, and using
their Wronskian to fix the eigenvalues. In the present work we present a different approach which is
based on the scalings and structures of the various asymptotic regions involved. This is useful in that

it motivates scalings for low-frequency/long-wavelength nonlinear stability also. The incompressible

problem is described in PSI, and its low-frequency nonlfnegr :stalr)tiliity analysis is given in PS2. The
asymptotic limit o — 0 is therefore considered and as in Section 3 we choose to work with equation
(2.5) for the perturbation normal velocity. Physically, we are considering instability scales that are
long compared tb the wake thickhes; but still short compared to the plate length. Further more mode |

disturbances are considered since they generally provide higher growth rates (see earlier comments).

A region Y = O(1) is considered first (region 1), where the appropriate expansions are found to

be :
b=0o+ %, + 0y + 0¥+ g+ - (4.1a)
c=cg+ o, +oc,+ -, (4.1b)
The function G that appears in (2.5) also expaﬁds as followsr:
G=Go+aG, + ---
where
Gp = T(Y) - M¥—y)? . (4.1¢c)
Let us now define the following linear operator L :
L) = @-e S -7 () (4.2)

Substitution of (4.1a-c) into (2.5) gives the following four leading order problems :

d 1 _ .
Iy [——Go L{¢g) J =0 , (4.3a)
< | @<t |=0 (4.3b)
dy | Gy VIO ' '
L Loty | =0 (43c)
dY GO 2 ¥ 172¥Y o ’
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< [G—‘o (L(¢3)—Cl¢'2‘cz¢'r'c3¢'o)]=0 , (439
’ ’ ’ ’ m_c)
<= [E‘;(L(m)«:lm—cwﬁw 1—04¢0)]= ==t - (430)

The appropriate solution of (4.3a) that is both even and bounded for large Y is the displacement solu-

tion
bo = Aglu—o) (4.9)
and to ensure decay to zero at infinity the leading order wave-speed is
cog=1

It is not surprising to find, therefore, that long-waves are almost ncutral and have phase-speeds approx-

imately equal to that of the free-stream. Next we find
dr==ciAg , 92=—CAg , $3=—CihAg

Substitution of (4.4) into (4.3e) gives the following solution for ¢4 :

00 Yz 2 Y
Go(yy) dy; ¢ (@-1)" dy, Gyly,) dy;
bg= A u—-ll[ ——=% 44 u—l‘[———-———cA : 4.5
a = Ag(-1) 1) .,J; = 4(0-1) 1) aAo (4.5)
where d4 is given by
It 2
ds = Ag Jﬂ%‘)-dv , ‘ (4.6)

since mode I disturbances are being analyzed and so ¢primy(0) = 0. It is the boundary condition (4.6)
that provides the solution for the eigenvalue c; when the solutions are extended out to the far-field
potential regions.

Inspection suggests that the soiu(ion (4.6) diverges as Y becomes large. The precise rate of diver-
gence depends on the asymptotic behavior of the basic flow U. For Blasius flow this it is given by
a~1- (A/|Y|)e"’{2 as | Y| — oo, while for the far wake we have U ~ 1 — (llx”z)e'yz. It can be anti-
cipated from the results of Gill and Drazin (1965), however, that the exact asymptotic behavior is not
important and the same final result is obtained to order o/’2 in the wave-speed at least. In order to

illustrate the method, therefore, we choose a model asymptotic behavior at infinity. The reason for this
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is that the level where the expansion breaks down can be found explicitly in terms of o (see below)
and the analysis is greatly reduced. The Blasius flow gives a breakdown at a logarithmically large dis-
tance away, together with the need of a logarithmically thin region there. The analysis bears a lot of
resemblance to the hypersonic limit work of Cowley and Hall (1989) on the stability of compressible
boundary layers. The final result is unaltered, however, and for brevity we take a model asymptotic
behavior, The far-wake profile can be worked éut explicitly also (it is a simple analogue of our sug-
gested asymptotic behavior); assume, therefore that T~ 1 — qe ™' Y! as |Y] — . Then the third and
fourth terms in the expansion (4.1a) become crbmp'arable when Y ~ —(1/2r) In(o) due to the exponential

growth of ¢4. A new region, II say, is introduced given by
Y= -——tlo+¥ |
2r '
where Y is of order one. Consideration of the solution in region I for large Y suggests the following
exbansions inlIl :
¢” = a”z(}n + 0.&2 + am&h + -+ aS,ilna ((51 + J)z + ...) + . (46)

These expansions are substituted into the Rayleigh equation (2.5), together with the appropriately
expanded forms of G and T to give the following solutions (the solutions given here have already been

matched to those in region )

Y

&1 = Ag(—qe™ ~¢;) (4.7a)
&)2 ==CAp , (4.7b)
v Y
by =dy4 (~ge = ¢)) f—+—2 -c3Ay , (4.7¢)
(@e™™ +¢cy)
A
M -rY 0
= (e —¢;) =2 | 4.7d
¢ = (—qe cy) a2 (4.7d)

To complete the solution a potential region Il say, of extent o' ia also required, so introduce a new
variable Y = o! { with § order one. Consideration of (4.7a-d) as Y — oo implies the following

expansions in IIT ;
¢”l = 0!.”2(1)0 + a(D, + 0.3/2(1)2 + o+ e—a_'r§($0 + 0.”2 6[ + ) + - . (48)

The leading order solution is

(X CUINTCTE L TURTE TR )

TR I TR
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®y=Be (4.9)

where B is a constant. The final result is obtained by matching (4.9), for small §, with (4.7a-d) for

large Y. We find
dg==Accf

which when coupled with the expression (4.6) for d4 yields

172

¢ =1 l(j%lﬁdY . (4.8)

This result is in complete agreement with that of Gill and Drazin (1965) and it has been shown that
long-wave disturbances are almost neutral, travel with the free-stream and have growth rates of order
a!2, In view of the dependence of T on Mach number, the wake is more stable the hotter it is, i.e. the
higher tha Mach number. Even though the growth rates are small with respect to the free-stream, they
become leading order effects in a frame of reference that travels with unit speed and so a classical
weakly nonlinear approach is not likely to work (see PS2). The situation in the hypersonic limit seems

different, however, since the growth rate decays to zero like M2 now.

5. Numerical solutions.

The previous sections presented some aspects of the analytical properties of the instability in the
special cases of short- and long-waves. As shown the growth rates are asymptotically small and in
order to find the maximally growing wavelengths or frequencies, as the case may be, the problem must
be addressed numerically in a systematic search of eigenvalues. The central element of our computa-
tions is the use of correct mean-flow profiles in the calculation of stability characteristics. Particularly,
this becomes essential in the near-wake where the use of model, e.g. gaussian profiles, is not appropri-
ate. The steady equations (2.3) together with (2.3BC) are solved numerically by marching forward in
x (Smith (1974), Cebeci et al. (1979), PS1). Some results for T and T are shown in Figures 1 and 2.
Refinement checks were made to ensure numerical accuracy. Typically 600 points are used, 300 in the
Goldstein layer and 300 in tﬁc boundary layer. Solutions are depicted at various increasing streamwise
locations ranging from § = 0.2 to 2.0 (i.e. the x variation is from 0.008 to 8.0), and due to symmetry

the region y 2 0 alone is shown. At the smallest value of £ the profile contains the Goldstein double-
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structure quite clearly, the main part of the flow being the displaced Blasius solution. Further down-
stream the center-line velocity increases and the profile develops into its far-wake form which is a
gaussian perturbation from the uniform flow at infinity. The center-line temperature, on the other hand,
decreases as the distance from the trailing edge increases with a return to the ambient temperature at
downstream infinity. The present work concentrates on the stability of the near-wake region where the
initial growth of disturbances takes place. It seems likely that further downstream the wake dynamics
become nonlinear as has been observed in experimental work on incompressible wakes (Sato and

Kuriki (1960)).

The computational strategy is as follows. A streamwise station, &, is chosen and the correspond-
ing steady-state velocity and térhperaluré ﬁioﬁles are obtained. thri;inean flow is then used in a
quasi-parallel manner (essentially & is a parameter) to define the compressibieﬁ Rayleigh problem (2.4),
(2.4BC). For a given Mach number (2.4) is integrated by starting at a large value of Y (uéuzﬂly the
outer limit of the mean-flow calculation) where the eigenfunction is generated by its exponentially
small behavior - this is readily found from (2.4) and the decaying solution is chosen in order to satisfy
boundedness at infinity (the possibility of neutral oscillatory solutions as the ones found in shear
layers, do not arise in the present problem; see later). A fourth ordErfRunge-Kutta integration extends
the solution to Y = 0, where the choice of either mode 1 or mode I1 disturbances fixes a linear eigen-
value problem which is solved by a root-finding routine. Most of the calculations address spatial stabil-
ity whereby the frequency @ = ac is taken to be real and the eigenvalues o and c are generally com-
plex. This stability problem corresponds to disturbances growing or decaying with downstream distance
and seems to be more relevant that the temporal problem where disturbances grow in time at fixed
positions (see later discussion on convective and absolute instability). Neutral eigensolutions are also
constructed, and as has been shown by Lees and Lin (1946) these have wave-speeds equal to the value

of the mean flow at the generalized inflection points. If these points are denoted by Y, then they are

given by the zeros of

d |uy
L(Y)= - [—L
=3y |7

Non-singular neutral eigensolutions have wave-speeds equal to T(Y.). In this case the Rayleigh equa-

tion has a removable singularity at Y. and in computing neutral eigensolutions we used deformation of

oot v ol e
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the integration into the complex plane below the singularity. By numerical evaluation of L(Y) it can
be concluded that the wake-flows under consideration have two generalized inflection points which are
symmetrically placed about the wake center-line. This situation persists at arbitrarily large Mach
numbers also, even though Y. now gets pushed towards the outer edges of the wake. In Figure 3 we
show a collection of L(Y) at different increasing Mach numbers and for the half-space Y 2 0; the
profile used is at & = 0.8 but the behavior is qualitatively the same at other wake-stations also. This in

turn means that, for a given x-station and Mach number, all neutral waves have the same wave-speed.

6. Results and discussion.

Before the presentation of stability results it is useful to consider the physical nature of the possi-
ble modes. A lot of information can be found by consideration of the eigenfunctions at infinity. Our
discussion follows the classification of instability waves in shear layers by Jackson and Grosch (1989).
The condition imposed on the disturbance is that it remains bounded as Y — o. For large Y, there-
fore, (2.4) gives the following behavior for 2D disturbances (3D ones form a simple extension, and we

only want to illustrate things here) :
p~et®dY o AZo1 - (1<c)’M? | (6.1)

The zeros of of A define the sonic lines where the disturbance at infinity neither grows nor decays.
These are given by

ci=1;t-Kl4—

It can be seen from this equation that the two sonic lines do not cross for any Mach number, and
further more c, represents a wave with speed higher than the free-stream value and is therefore pre-
cluded on physical grounds. If A? is positive, the negative sign in the exponential in (6.1) is taken and
the disturbance vanishes at infinity - the perturbation is termed subsonic since it has characteristics
similar to those of incompressible stability. If A? is negative, however, the solutions are oscillatory at
infinity where they take the form of outgoing or incoming waves. Such neutral waves are singular in
that they do not satisfy the Lees and Lin regularity condition, but they are physically relevant as zero
viscosity limit solutions of the "Orr-Sommerfeld" problem (Lees and Lin (1946), Jackson and Grosch

(1989)). In the present wake problem the possibility of A? being negative does not arise, and to see
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this we construct the neutral wave-speed from the Lees and Lin generalized inflection point criterion
and plot it together with the equation of the sonic line c_. A typical situation is depicted in Figure 4 for
two wake stations € = 0.1 and £ = 1.2, The conclusion is, therefore, that subsonic boundary conditions

at infinity are adequate.

As mentioned earlier, we chose to carry orutraﬂépatial stability analysis which is, in general, more
pertinent to wake-flows than a temporal one. Before presemmg requltq it is worth menhomng that the
accuracy of computed exgenvalueq was checkcd by doublmg the number of pomts in the mean-flow
computation. The finding is that the representation of the mean-flow by 600 points produces more than

graphical accuracy in the results.

First we address the convective/absolute instability question. Tn Figure 5a we show a collection
of mode I spatial stability curves depicting the variation of —oy (the spatial growth-rate) with frequeﬁcy
0, and fdr the basic flow ”Vb'rofr'rlzeiér' at the streamwise locations
£=08,06,04,02,0.08, 006,004,002, 0.01. The Mach number is 0.1 and the correspond-
ing wave-number curves ( ¢, vs @ ) are given in Figure 5b. Figure 5a shows that as we get closer to
the trailing edge the maximum growth rate increases sharply and the frequency band of unstable waves
decreases. This behavior is very similar to that discussed in PS1 for incompressible near-wakes. The
fact that the instability is changing from convective to absolute, can be seen from Figure 5b. The
curves become steeper as & decreases and by the stability at the final wake-station £ = 0.01 is charac-
terized by an infinite gradient. The value of du/do, is tending to zero, which is the condition for abso-
lute instability (see Huerre and Monkewitz (1985)). It is found, therefore, that there exists a region of
absolute instability in the near wake for small Mach numbers; it is worth noting that the extent of this

region is very small, less than 0.000001xL in dimensional terms.

The effect of Mach number on the presence of absolute instability regions is investigated next.
The same wake-stations as in Figures 5 are used but the Mach number is now 3.0. Figures 6a and 6b
show the variation of spatial growth-rates and wave-numbers with frequency, for the various wake-
stations in question. First, note that in absolute terms the maximum growth rates decrease by more than
a factor of ten and the unstable frequency band decreases by a factor of two about. In general terms,
therefore, the effect of a higher Mach number is highly stabilizing (sce results later also for more quan-

titative conclusions) The sharp features and singularity formation of Figures 5a,b are no longer present.

ey
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In fact, as Figure 6a shows, the spatial growth rate curves converge to a limiting one as & is decreascd
(the change between the curves at & = 0.02 and § = 0.01 is almost negligible). The fact that no singu-
larity forms is clarified further by Figure 6b; the variation of o, with frequency tends to a limiting
curve with a finite slope.

The previous results addressed the effect of the basic-flow development on its stability charac-
teristics. In what follows we pick two typical wake-stations and carry out a more detailed stability cal-
culation. The two profiles used correspond to the values £ =0.1 and § = 1.2. They differ in that the
former is a near-wake profile ( x = 0.001 ) while the Iatter is a far-wake one ( x = 1.728). Their
respective center-line velocities are 0.0772 and 0.72. Physically the near-wake still retains many of the
characteristics of the upstream boundary-layer flow while in the far-wake the double structures seen

upstream are no longer present.

Figures 7a and 7b depict the effect of Mach number on the wake-stability at & =0.1. Mode I
waves are computed at Mach numbers 0, 0.5, 1, 1.5, 2, 2.5 and 3. A marked increase in stability is
observed with the maximum growth rate dropping from approximately 0.27 at zero Mach number to
0.03 at a Mach number of 3. The frequency range of unstable waves also decreases. The value of the
neutral wave-number ( o ) also decreases with Mach number as can be seen from Figure 7b; the neu-
tral o is the value at the ends of the depicted curves since these points correspond to the almost
attained neutral points on the spatial stability curves 7a. The curves go from right to left as the Mach
number increases. This calculation was carried further to the higher Mach numbers of 4,5, 6,7, 8 and
9. The results are shown in Figures 8a and 8b. The continued increase of stability is clearly demon-
strated and at a Mach number of 9 the maximum growth rate is tiny, about 0.002. Figure 8b depicts
the variation of o, with © for the two Mach numbers of 4 and 9 only; the curves for intermediate
Mach numbers are almost coincident but their end-points are at lower values of o,. The curve for
M = 4 is deliberately not continued to the origin since we are mainly interested at the endpoints. The
conclusion that can be drawn from this calculation is that the neutral o is decreasing to zero with

Mach number. The situation is quite different at a far-wake station as is shown later.

Figures 9a and 9b describe the stability characteristics of mode 11 waves at the station § = 0.1
and at Mach numbers of 0, 0.5 and 1.0. Comparison with Figures 7a,b shows that mode 11 is much

more stable than mode 1. For example at M =1 the maximum growth rate of mode I waves is
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approximately 0.15 while that for a mode Il wave at the same Mach number is only 0.0025; the
corresponding ranges of unstable frequencies are 0 to 0.32 and 0.006 respectively. Further more, at the
wake-station under consideration, the maximum growth rate of the mode Il waves increase slightly for
oblique waves, but for a given Mach number they are still much lower than the corresponding 2D
mode | growth rates. Figure 9b shows that the neutral wave-number is again decreasing witﬁh Mach

number.

In Figures 10a and 10b we show the effect of obliqueness on the instability. In particular, mode
I waves are computed at a Mach number of 3 and inclined at angles of 0, 20, 30, 45, 60 and 75
degrees respectively to the direction of the basic flow. The maximum growth rates are scen to increase
as the angle increases, but the neutral frequencies decrease with angle. The final computed angle of 75
degrees has the highest maximum growth rate which is almost twice that of the 2D wave. When the
angle increases further the curve begins to come down. For small wave-propagation angles the fre-
quency where the maximum growth rate is achieved increases by a small amount from the 2D one, but
when the angle increases from 60 to 75 degrees the maximum growth rate frequency shifts to a lower
value. The corresponding variation of o, with ® is shown in Figure 10b. The curves move from right

to left as the angle increases.

In Figures 11a and 11b we present stability characteristics of a typical far-wake station that has
£ =1.2. Mode I waves are computed and growth rate and wave-number curves are shown for the
Mach numbers 0, 1, 2, 3, 4, 5, 6 and 7. The qualitative nature of the results is very similar to those of
the near-wake station £ = 0.1. The maximum growth rates are much lower, however (eg. at M =1 the
maximum growth rates are approximately 0.018 and 0.16 respectively). The main quantitative
difference between the two stations is that the neutral value of o for the far-wake profile is approach-
ing a non-zero constant as the Mach number increases, whereas the near-wake value was decreasing to
zero. This apparent difference in the physics is not too surprising in view of the completely different

structure of the basic flow in the near- and far-wake respectively.

7. Conclusions.

The present study is concerned with the understanding of the physical instability mechanisms that

are at play in free shear flows and in particular symmetric wakes. The main emphasis was given to the
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instability of near-wakes. It was shown that these mechanisms can orﬂy be captured correctly if the
correct basic flow is used. In fact our results suggest that the hypersonic limit of far-wakes is very
different from that of near-wakes (this problem is currently being analyzed by the author), and the use
of a model profile (e.g. gaussian distribution) in an attempt to capture the near-wake dynamics is
incorrect. Using our computed basic-flow we showed that for low enough Mach numbers there exists
a small region of absolute instability very near the trailing edge which disappears as the Mach number
increases. The maximum spatial growth rates available increase as the trailing edge is approached,
irrespective of the Mach number. Further more mode I waves are the most dangerous in the near-wake
and the instability (maximum growth-rate) can be almost doubled if the wave is three-dimensional. If
a temporal theory is carried out instead, some different behavior results. For example, as Chen et al.
(1989) report, a far-wake profile modeled by the gaussian distribution ¥ =1 - 0.692¢ %69315Y" topether
with the corresponding temperature variation, gives the highest temporal growth rate for mode I waves
which are two dimensional, and at all Mach numbers. In Figure 12 we show the spatial stability of this
profile, which shows that the growth rate is larger for 3D waves inclined at an angle of about 60
degrees. Such discrepancies between spatial and temporal calculations can, therefore, be very mislead-

ing in practical applications.
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Figure 1 Streamwise development of basic flow; horizontal velocity component. Flow develops from

left to right; streamwise locations are shown on the figure.
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Figure 2 Streamwise development of basic flow; temperature profile. Flow develops from right to left.

CLLITY ST T e T TR



(u'/T<T)

29
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Figure 3 Generalized inflection point condition. Variation of A(Y) with Y. M= 0.5, 1.5, 2.5, 3.5, 4.5,

5.5, 6.5, 7.5, 8.5, 9.5. The roots of A move to the right with increasing Mach number.



30

(@ - =01, (8) - ¢=20

1.0

0.8

o 0.6
kS
O
(6]
Q
1§
(D)
>
2 0.4
0.2
0.0 :
i i 1 I i
0 5 10 15 70

Mach number

Figure 4 Mode classification diagram. Solid curve is the sonic line, the other curves show the variation

of the neutral wave-speed with Mach number for the basic flow at § = 0.1 and § = 1.2,

-

[T T LT

sl w11 6450 1111t

M T ) il

T U

V17 i

il



31
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Figure 5a Spatial stability of proper compressible wake profiles at various streamwise locations. Mach
number M=0.1. The graphs show the variation of the spatial growth rate —a; with frequency . The

curves correspond to the streamwise locations E=08, 0.6, 04, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02 and

0.01.
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Figure Sb Same as Figure Sa but the variation of o with ® is now shown.
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Figure 6a Spatial stability of proper compressible wake profiles at various streamwise locations. Mach

number M=3.0. The graphs show the variation of the spatial growth rate —o; with frequency . The

curves correspond to the streamwise locations § = 0.8, 0.6, 0.4, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02 and

0.01.
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Figure 6b Same as Figure 6a but the variation of o, with 0 is now shown.
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Figure 7a Near wake profile & = 0.1. Spatial growth rate curves of —o; vs @ for different increasing

Mach numbers M=0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0.
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Figure 7b Same as 7a but variation of o, with w.
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Figure 8a Near wake profile £ = 0.1. Spatial growth rate curves of —a; vs  for different increasing

Mach numbers M=4, 5, 6, 7, 8, 9.
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Figure 8b Near wake profile £ = 0.1. Variation of a, with ® for M=4 and 9.
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Figure 9a Near wake profile § = 0.1. Mode 11 waves. Spatial stability curves of —a; vs  at M=0, 0.5,

1.0.
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Figure 9b Near wake profile § = 0.1. Mode Il waves. Spatial stability curves of o, vs ® at M=0, 0.5,
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Figure 10a Near wake profile & = 0.1. 3D mode I waves, Spatial stability curves of —alpha; vs  at a

Mach number of 3.0. The angles of propagation are 8 = 0, 20, 30, 45, 60 and 75 degrees.
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Figure 10b Same as Figure 10a but variation of o with 0.
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Figure 11a Far wake profile § = 1.2. Spatial stability growth rate curves of —alpha; vs ® for M=0, I,

2,3,4,5 6and 7.
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Figure 11b Same as 11a but variation of o with 0.
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Figure 12 Gaussian model profile - 3D spatial stability at angles 0 = 0, 30, 60, 75.
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